■間引いたフィボナッチ数列(その22)
フィボナッチ数列
f(x)=(x)/(1-x-x^2)=(1/√5)/(1-αx)-(1/√5)/(1-βx)
α=(1+√5)/2、β=(1-√5)/2
an=1/√5・{α^n-β^n}
間引いたフィボナッチ数列{F2^n}、すなわち、1,1,3,21,987,・・・
α=(1+√5)/2、β=(1-√5)/2
F2^n=1/√5・{α^2^n-β^2^n}
では
Σ1/F2^n=(7-√5)/2
が成り立つ
===================================
F(2^n-1)L(2^n)=F(2^n+1-1)+1
ΠL2^i=F(2^n+1)
===================================
P=(1+1/2)(1+1/13)(1+1/610)・・・=Π(1+1/F2^n+1-1)
=Π(1+F(2^n+1-1)/(F2^n+1-1)
=Π(F(2^n-1)L(2^n))/(F2^n+1-1)
=Π(F(2^n-1)/(F2^n+1-1)・F2(2^m+1)
=F(2^m+1)/F(2^m+1-1)→φ
===================================
ΣFi/2^i+1=1/2=1/F3
ΣFi/3^i+1=1/3=1/F5
ΣFi/8^i+1=1/55=1/F10
ΣFi/10^i+1=1/89=1/F11
1+Fnが連続する2整数の積である場合は
2・3=1+F5
7・8=1+F10
1・2=1+F1
9・10=1+F11
===================================
また、
ΣFi-1/10^i=1/89=1/F11
ΣFi-1/10^2i=1/9899
ΣFi-1/10^3i=1/998999
ΣFi-1/(-10^2i)=1/10099
ΣFi-1/(-10^3i)=1/1000999
===================================
ΣFk/2^k=2
(証)
ΣFkx^k=x/(1-x-x^2)は|x|<1/αのとき収束する.
x=1/2とおくとΣFk/2^k=2が得られる
===================================