■平方根と連分数(その78)

ペル系列としては

√40/2→2x^2-4x-3=0

√1300/12→12x^2-26x-13=0

√44104/70→70x^2-152x-75=0=0

===================================

√5/1→x^2-x-1

√8/2→x^2-2x-1

√221/5→5x^2-11x-5

√1517/13→13x^2-29x-13

√7565/29→29x^2-63x-31・・・ペル

√10400/34→17x^2-38x-17

√71285/89→89x^2-199x-89

√257045/169→169x^2-367x-181・・・ペル

√338720/194→97x^2-216x-98・・・どちらでもない

√488597/233→233x^2-521x-233

===================================

70x^2-152x-75=0=0

x={76+√ (11026)}/70+++

x=2+{-64+√ (11026)}/70

x=2+1/(70/{-64+√ (11026)})

x=2+1/({64+√ (11026)}/99)

x=2+1/(1+{-35+√ (11026)}/99)

x=2+1/(1+1/(99/{-35+√ (11026)})

x=2+1/(1+1/({35+√ (11026)}/99)

x=2+1/(1+1/(1+{-64+√ (11026)}/99)

x=2+1/(1+1/(1+1/(99/{-64+√ (11026)})

x=2+1/(1+1/(1+1/({64+√ (11026)}/70)

x=2+1/(1+1/(1+1/(2+{-76+√ (11026)}/70)---

x=2+1/(1+1/(1+1/(2+1/(70/{-76+√ (11026)})

x=2+1/(1+1/(1+1/(2+1/({76+√ (11026)}/75)

x=2+1/(1+1/(1+1/(2+1/(2+{-74+√ (11026)}/75)

x=2+1/(1+1/(1+1/(2+1/(2+1/(75/{-74+√ (11026)})

x=2+1/(1+1/(1+1/(2+1/(2+1/({74+√ (11026)}/74)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+{-74+√ (11026)}/74)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(74/{-74+√ (11026)})

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/({74+√ (11026)}/75))

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+{-76+√ (11026)}/75))

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(75/{-76+√ (11026)})

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/{76+√ (11026)}/70)++++

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+{-64+√ (11026)}/70)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(70/{-64+√ (11026)})

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/{64+√ (11026)})/99}

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+{-35+√ (11026)})/99}

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(99/{-35+√ (11026)})

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/({35+√ (11026)}/99)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+{-64+√ (11026)}/99)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(99/{-64+√ (11026)})

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/({64+√ (11026)}/70)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+{-76+√ (11026)}/70)------

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(70/{-76+√ (11026)})

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/({76+√ (11026)}/75)++++

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+{-74+√ (11026)}/75)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(75/{-74+√ (11026)})

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/({74+√ (11026)}/74)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+{-74+√ (11026)}/74)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(74/{-74+√ (11026))}

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/({74+√ (11026)}/75)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+{-76+√ (11026)}/75)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(75/{-76+√ (11026)})

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(76+√ (11026)}/70)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+{-64+√ (11026)}/70)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(70/{-64+√ (11026)}

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/({64+√ (11026)}/99)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+(-35+√ (11026)}/99}

===================================

x=[2:1,1,2,2,2,2---2,1,1,1,1,2,2,2,2,・・・]={76+√ (11026)}/70 x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/x) x=2+1/(1+1/(1+1/(2+1/(2+1/(2+x/(2x+1) x=2+1/(1+1/(1+1/(2+1/(2+(2x+1)/(5x+2)) x=2+1/(1+1/(1+1/(2+(5x+2)/(12x+5)) x=2+1/(1+1/(1+(12x+5)/(29x+12)) x=2+1/(1+(29x+12)/(41x+17)) x=2+(41x+17)/(70x+29)=(181x+75)/(70x+29) 70x^2-152x-75=0

y=[0:2,2,2,2,1,1,2,---,2,2,2,2,1,1,2

y=1/(2+1/(2+1/(2+1/x))

=1/(2+1/(2+x/(2x+1))

=1/(2+(2x+1)/(5x+2)

=(5x+2)/(12x+5)

{76+√ (11026)}/70

y=

{520+5√ (11026)}/(1262+12√ (11026)}

(520+5√ (11026)(1262-12√(11026))/(1592644-1587744)

(656240-661560+70√ (11026))/(4900)

(-5320+√ (11026))/(4900)={-76+√ (11026)}/70・・・OK

===================================