■平方根と連分数(その77)

ペル系列としては

√40/2→2x^2-4x-3=0

√1300/12→12x^2-26x-13=0

√44104/70→70x^2-152x-75=0=0

===================================

√5/1→x^2-x-1

√8/2→x^2-2x-1

√221/5→5x^2-11x-5

√1517/13→13x^2-29x-13

√7565/29→29x^2-63x-31・・・ペル

√10400/34→17x^2-38x-17

√71285/89→89x^2-199x-89

√257045/169→169x^2-367x-181・・・ペル

√338720/194→97x^2-216x-98・・・どちらでもない

√488597/233→233x^2-521x-233

===================================

12x^2-26x-13=0

x={13+√ (325)}/12+++

x=2+{-11+√ 325)}/12

x=2+1/(12/{-11+√ 325)})

x=2+1/({11+√325)}/17)

x=2+1/(1+{-6+√ 325}/17)

x=2+1/(1+1/(17/{-6+√ (325)})

x=2+1/(1+1/({6+√325)}/17)

x=2+1/(1+1/(1+{-11+√325)}/17)

x=2+1/(1+1/(1+1/(17/{-11+√ (325)})

x=2+1/(1+1/(1+1/({11+√ 325)}/12)

x=2+1/(1+1/(1+1/(2+{-13+√ (325)}/12)---

x=2+1/(1+1/(1+1/(2+1/(12/{-13+√ 325)})

x=2+1/(1+1/(1+1/(2+1/({13+√325)}/13)

x=2+1/(1+1/(1+1/(2+1/(2+{-13+√ (325)}/13)

x=2+1/(1+1/(1+1/(2+1/(2+1/(13/{-13+√ (325)})

x=2+1/(1+1/(1+1/(2+1/(2+1/({13+√ 325)}/12)+++

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+{-11+√ 325)}/12)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(12/{-11+√ 325)})

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/({11+√ 325)}/17))

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(1+{-6+√ 325}/17))

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(1+1/(17/{-6+√ 325)})

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(1+1/{6+√ (325}/17)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(1+1/(1+{-11+√ 325}/17)

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(1+1/(1+1/(17/{-11+√ 325)})

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(1+1/(1+1/{11+√ 325)})/12}

x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+{-13+√325)})/12}---

===================================

x=[2:1,1,2,2,---2,1,1,2,2---,2,1,1,2,2,・・・]={13+√ (325)}/12

x=2+1/(1+1/(1+1/(2+1/(2+1/x))

x=2+1/(1+1/(1+1/(2+x/(2x+1))

x=2+1/(1+1/(1+(2x+1)/(5x+2))

x=2+1/(1+(5x+2)/(7x+3)

x=2+(7x+3)/(12x+5)=(31x+13)/(12x+5)

12x^2-26x-13=0

y=[0:2,2,1,1,2,---2,2,1,1,2]

y=1/(2+1/x)=x/(2x+1)={13+√ (325)}/{38+2√ (325)}={13+√ (325)}{38-2√ (325)}/144

={494-650+12√ (325)}/144={-13+√ (325)}/12

===================================