■平方根と連分数(その77)
ペル系列としては
√40/2→2x^2-4x-3=0
√1300/12→12x^2-26x-13=0
√44104/70→70x^2-152x-75=0=0
===================================
√5/1→x^2-x-1
√8/2→x^2-2x-1
√221/5→5x^2-11x-5
√1517/13→13x^2-29x-13
√7565/29→29x^2-63x-31・・・ペル
√10400/34→17x^2-38x-17
√71285/89→89x^2-199x-89
√257045/169→169x^2-367x-181・・・ペル
√338720/194→97x^2-216x-98・・・どちらでもない
√488597/233→233x^2-521x-233
===================================
12x^2-26x-13=0
x={13+√ (325)}/12+++
x=2+{-11+√ 325)}/12
x=2+1/(12/{-11+√ 325)})
x=2+1/({11+√325)}/17)
x=2+1/(1+{-6+√ 325}/17)
x=2+1/(1+1/(17/{-6+√ (325)})
x=2+1/(1+1/({6+√325)}/17)
x=2+1/(1+1/(1+{-11+√325)}/17)
x=2+1/(1+1/(1+1/(17/{-11+√ (325)})
x=2+1/(1+1/(1+1/({11+√ 325)}/12)
x=2+1/(1+1/(1+1/(2+{-13+√ (325)}/12)---
x=2+1/(1+1/(1+1/(2+1/(12/{-13+√ 325)})
x=2+1/(1+1/(1+1/(2+1/({13+√325)}/13)
x=2+1/(1+1/(1+1/(2+1/(2+{-13+√ (325)}/13)
x=2+1/(1+1/(1+1/(2+1/(2+1/(13/{-13+√ (325)})
x=2+1/(1+1/(1+1/(2+1/(2+1/({13+√ 325)}/12)+++
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+{-11+√ 325)}/12)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(12/{-11+√ 325)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/({11+√ 325)}/17))
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(1+{-6+√ 325}/17))
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(1+1/(17/{-6+√ 325)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(1+1/{6+√ (325}/17)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(1+1/(1+{-11+√ 325}/17)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(1+1/(1+1/(17/{-11+√ 325)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(1+1/(1+1/{11+√ 325)})/12}
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+{-13+√325)})/12}---
===================================
x=[2:1,1,2,2,---2,1,1,2,2---,2,1,1,2,2,・・・]={13+√ (325)}/12
x=2+1/(1+1/(1+1/(2+1/(2+1/x))
x=2+1/(1+1/(1+1/(2+x/(2x+1))
x=2+1/(1+1/(1+(2x+1)/(5x+2))
x=2+1/(1+(5x+2)/(7x+3)
x=2+(7x+3)/(12x+5)=(31x+13)/(12x+5)
12x^2-26x-13=0
y=[0:2,2,1,1,2,---2,2,1,1,2]
y=1/(2+1/x)=x/(2x+1)={13+√ (325)}/{38+2√ (325)}={13+√ (325)}{38-2√ (325)}/144
={494-650+12√ (325)}/144={-13+√ (325)}/12
===================================