■平方根と連分数(その76)

ペル系列としては

√40/2→2x^2-4x-3=0

√1300/12→12x^2-26x-13=0

√44104/70→70x^2-152x-75=0=0

===================================

√5/1→x^2-x-1

√8/2→x^2-2x-1

√221/5→5x^2-11x-5

√1517/13→13x^2-29x-13

√7565/29→29x^2-63x-31・・・ペル

√10400/34→17x^2-38x-17

√71285/89→89x^2-199x-89

√257045/169→169x^2-367x-181・・・ペル

√338720/194→97x^2-216x-98・・・どちらでもない

√488597/233→233x^2-521x-233

===================================

2x^2-4x-3=0

x={2+√ 10}/2++

x=2+{-2+√ 10)}/2---

x=2+1/(2/{-2+√ 10)})

x=2+1/({2+√10}/3)

x=2+1/(1+{-1+√ 10)}/3)

x=2+1/(1+1/(3/{-1+√ 10})

x=2+1/(1+1/({1+√10)}/3)

x=2+1/(1+1/(1+{-2+√ 10)}/3)

x=2+1/(1+1/(1+1/(3/{-2+√10)})

x=2+1/(1+1/(1+1/({2+√10)}/2)+++

x=2+1/(1+1/(1+1/(2+{-2+√10}/2)---

x=2+1/(1+1/(1+1/(2+1/(2/{-2+√ 10)})

x=2+1/(1+1/(1+1/(2+1/({2+√ 10}/3)

x=2+1/(1+1/(1+1/(2+1/(1+{-1+√ 10)}/3)

x=2+1/(1+1/(1+1/(2+1/(1+1/(3/{-1+√ 10})

x=2+1/(1+1/(1+1/(2+1/(1+1/({1+√ (10)}/3)

===================================

x=[2:1,1,---2,1,1,--]=x={2+√ 10}/2

x=2+1/(1+1/(1+1/x))

x=2+1/(1+x/(x+1))

x=2+(x+1)/(2x+1)=(5x+3)/(2x+1)

2x^2+x=5x+3

x=2+y

y={[0:1,1,2,---1,1,2,1,1]

===================================