■平方根と連分数(その69)
x^2-3x-1=0
α=(3+√13)/2,β=(3-√13)/2
===================================
b1=(α-β)/(α-β)=1
b2=(α^2-β^2)/(α-β)=(α+β)=3
b3=3b2+b1=10
b4=3b3+b2=33
b5=3b4+b3=109
b6=3b5+b4=360
b7=3b6+b5=1189
b8=3b7+b6=3927
b9=3b8+b7=12970
b10=3b9+b8=42837
これらはマルコフ数ではない
===================================
b1=(α+β)=3
b2=(α^2+β^2)=(α+β)^2-2αβ =11
b3=3b2+b1=36
b4=3b3+b2=119
b5=3b4+b3=393
b6=3b5+b4=1298
b7=3b6+b5=4287
b8=3b7+b6=14159
b9=3b8+b7=46764
b10=3b9+b8=154451
これらはマルコフ数ではない
===================================
λ^2=9-4/F^2
λ^2-4=5-4/F^2
L^2-5F^2=4(-1)^n
Fがフィボナッチ数の奇数項のとき、L^2-5F^2=-4
L^2=5F^2-4
(L/F)^2=5-4/F^2・・・平方となる
ペル数の場合は
Q^2-8P^2=4(-1)^n
λ^2=9-4/P^2
λ^2-4=5-4/P^2
Pがペル数の奇数項のとき、Q^2-8P^2=-4
Q^2=8P^2-4
(Q/P)^2=8-4/P^2
λ^2=12-4/P^2でないと平方にならない
λ^2-4=8-4/P^2
P=29のときλ=√ (10088)/29
x^2-λx-1=0
x={λ+(λ^2-4)^1/2}/2
x={√ (10088)+82}/58>3???・・・おかしい
1/x=58/{√ (10088)+82}={√ (10088)-82}/58
===================================
√5/1→x^2-x-1
√8/2→x^2-2x-1
√221/5→5x^2-11x-5
√1517/13→13x^2-29x-13
√7565/29→29x^2-63x-31・・・ペル
√10400/34→17x^2-38x-17
√71285/89→89x^2-199x-89
√257045/169→169x^2-367x-181・・・ペル
√338720/194→97x^2-216x-98・・・どちらでもない
√488597/233→233x^2-521x-233
===================================
97x^2-216x-98=0
x={108+√ (21170)}/97+++
x=2+{-86+√ (21170)}/97
x=2+1/(97/{-86+√ (21170)})
x=2+1/({86+√ (21170)}/142)
x=2+1/(1+{-56+√ (21170)}/142)
x=2+1/(1+1/(142/{-56+√ (21170)})
x=2+1/(1+1/({56+√ (21170)}/127)
x=2+1/(1+1/(1+{-71+√ (21170)}/127)
x=2+1/(1+1/(1+1/(127/{-71+√ (21170)})
x=2+1/(1+1/(1+1/({71+√ (21170)}/127)
x=2+1/(1+1/(1+1/(1+{-56+√ (21170)}/127)
x=2+1/(1+1/(1+1/(1+1/(127/{-56+√ (21170)})
x=2+1/(1+1/(1+1/(1+1/({56+√ (21170)}/142)
x=2+1/(1+1/(1+1/(1+1/(1+{-86+√ (21170)}/142)
x=2+1/(1+1/(1+1/(1+1/(1+1/(142/{-86+√(21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/({86+√(21170)}/97)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+{-108+√ (21170)}/97)+++
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(97/{-108+√(21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/({108+√(21170)}/98))
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+{-88+√(21170)}/98))
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(98/{-88+√(21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/{88+√ (21170)}/137)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+{-49+√ (21170)}/137)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(137/{-49+√(21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/{49+√ (21170)})/137}
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+{-88+√ (21170)})/137}
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(137/{-88+√ (21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/({88+√(21170)}/98)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+{-108+√(21170)}/98)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(98/{-108+√ (21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/({108+√ (21170)}/97)++++
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+{-86+√ (21170)}/97)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(97/{-86+√ (21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/({86+√(21170)}/142)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+{-56+√ (21170)}/142)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(142/{-56+√ (21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/({56+√(21170)}/127)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+{-71+√(21170)}/127)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(127/{-71+√(21170)}
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/({71+√(21170)}/127)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(1+{-56+√(21170)}/127)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(1+1/(127/{-56+√(21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(1+1/(56+√(21170)}/142)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(1+1/(1+{-86+√(21170)}/142)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(1+1/(1+1/(142/{-86+√(21170)}
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(1+1/(1+1/({86+√(21170)}/97)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(1+1/(1+1/(2+(-108+√(21170)}/97}+++
===================================
x=[2:1,1,1,1,2,2,1,1,2---,2,1,1,1,1,2,2,1,1,2,・・・]={108+√ (21170)}/97
y={-108+√ (21170)}/97=[0:2,1,1,2,2,1,1,1,1,2,---,2,1,1,2,2,1,1,1,1,2
y=1/(2+1/(1+1/(1+1/(2+1/x)
=1/(2+1/(1+1/(1+x/(2x+1)
=1/(2+1/(1+(2x+1)/(3x+1)
=1/(2+(3x+1)/(5x+2)
=(5x+2)/(13x+5)
y=
(734+5√ (21170)/(1889+13√(21170))
(734+5√ (21170)(1889-13√(21170)))/(3568321-3577730)
(1386526-1376050-97√ (21170))/(-9409)
(-108+√ (21170))/(97)・・・OK
===================================