■平方根と連分数(その68)
x^2-3x-1=0
α=(3+√13)/2,β=(3-√13)/2
===================================
b1=(α-β)/(α-β)=1
b2=(α^2-β^2)/(α-β)=(α+β)=3
b3=3b2+b1=10
b4=3b3+b2=33
b5=3b4+b3=109
b6=3b5+b4=360
b7=3b6+b5=1189
b8=3b7+b6=3927
b9=3b8+b7=12970
b10=3b9+b8=42837
これらはマルコフ数ではない
===================================
b1=(α+β)=3
b2=(α^2+β^2)=(α+β)^2-2αβ =11
b3=3b2+b1=36
b4=3b3+b2=119
b5=3b4+b3=393
b6=3b5+b4=1298
b7=3b6+b5=4287
b8=3b7+b6=14159
b9=3b8+b7=46764
b10=3b9+b8=154451
これらはマルコフ数ではない
===================================
λ^2=9-4/F^2
λ^2-4=5-4/F^2
L^2-5F^2=4(-1)^n
Fがフィボナッチ数の奇数項のとき、L^2-5F^2=-4
L^2=5F^2-4
(L/F)^2=5-4/F^2・・・平方となる
ペル数の場合は
Q^2-8P^2=4(-1)^n
λ^2=9-4/P^2
λ^2-4=5-4/P^2
Pがペル数の奇数項のとき、Q^2-8P^2=-4
Q^2=8P^2-4
(Q/P)^2=8-4/P^2
λ^2=12-4/P^2でないと平方にならない
λ^2-4=8-4/P^2
P=29のときλ=√ (10088)/29
x^2-λx-1=0
x={λ+(λ^2-4)^1/2}/2
x={√ (10088)+82}/58>3???・・・おかしい
1/x=58/{√ (10088)+82}={√ (10088)-82}/58
===================================
√5/1→x^2-x-1
√8/2→x^2-2x-1
√221/5→5x^2-11x-5
√1517/13→13x^2-29x-13
√7565/29→29x^2-63x-31・・・ペル
√10400/34→17x^2-38x-17
√71285/89→89x^2-199x-89
√257045/169→169x^2-367x-181・・・ペル
√338720/194→97x^2-216x-98・・・どちらでもない
√488597/233→233x^2-521x-233
===================================
169x^2-367x-181=0
x={367+√ (257045)}/338+++
x=2+{-309+√ (257045)}/338
x=2+1/(338/{-309+√ (257045)})
x=2+1/({309+√ (257045)}/478)
x=2+1/(1+{-169+√ (257045)}/478)
x=2+1/(1+1/(478/{-169+√ (257045)})
x=2+1/(1+1/({169+√ (257045)}/478)
x=2+1/(1+1/(1+{-309+√ (257045)}/478)
x=2+1/(1+1/(1+1/(478/{-309+√ (257045)})
x=2+1/(1+1/(1+1/({309+√ (257045)}/338)
x=2+1/(1+1/(1+1/(2+{-367+√ (257045)}/338)+++
x=2+1/(1+1/(1+1/(2+1/(338/{-367+√ (257045)})
x=2+1/(1+1/(1+1/(2+1/({367+√ (257045)}/362)
x=2+1/(1+1/(1+1/(2+1/(2+{-357+√ (257045)}/362)
x=2+1/(1+1/(1+1/(2+1/(2+1/(362/{-357+√ (257045)})
x=2+1/(1+1/(1+1/(2+1/(2+1/({357+√ (257045)}/358)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+{-359+√ (257045)}/358)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(358/{-359+√ (257045)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/({359+√ (257045)}/358))
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+{-357+√ (257045)}/358))
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(358/{-357+√ (7565)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/{357+√ (257045)}/362)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+{-367+√ (257045)}/362)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(362/{-367+√ (257045)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/{367+√ (257045)})/338}+++
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(2+{-309+√ (257045)})/338}
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(2+1/(338/{-309+√ (257045)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(2+1/({309+√ (257045)}/478)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+{-169+√ (257045)}/478)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(478/{-169+√ (257045)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/({169+√ (257045)}/478)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+{-309+√ (257045)}/478)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(478/{-309+√ (257045)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/({309+√ (257045)}/338)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+{-367+√ (257045)}/338)+++
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(338/{-367+√ (257045)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/({367+√ (257045)}/362)
===================================
x=[2:1,1,2,2,2,2,2---,2,1,1,2,2,2,2,・・・]={367+√ (257045)}/338
y={-367+√ (257045)}/338=[0:2,2,2,2,2,1,1,2,---,2,2,2,2,2,1,1,2
y=1/(2+1/(2+1/(2+1/(2+1/x)
=1/(2+1/(2+1/(2+x/(2x+1)
=1/(2+1/(2+(2x+1)/(5x+2)
=1/(2+(5x+2)/(12x+5)
=(12x+5)/(29x+12)
y=
(6094+12√ (257045)/(14699+29√(257045))
(6094+12√ (257045))(14699-29√(257045))/(216060601-216174845)
(89575706-89451660-338√ (257045))/(-114244)
(-367+√ (257045))/(338)・・・OK
===================================