■マチアセビッチとフィボナッチ数生成関数(その97)
ここでは,√5に収束する数列を考えることにします.
2^2-5・1^2=-1
9^2-5・4^2=+1
===================================
x^2-3xy+y^2=(-1)^nをペル方程式に変換する
{(2x-3y)/2}^2-5{y/2}^2=(-1)^n
X^2-5Y^2=(-1)^n
X=1/2{{(2+√5}^(n)+{(2-√5)}^(n)}
Y=1/2√5{(2+√5)}^(n)-{(2-√5}^(n)}
φ^3=2+√5, (-1/φ)^3=2-√5
X=√5/2√5{φ^(3n)+{-1/φ^(3n)}
Y=1/2√5{φ^(3n)-{-1/φ}^(3n)}
y=1/√5{φ^(3n)-{-1/φ}^(3n)}
x=X+3y/2=1/2{φ^(3n)+{-1/φ^(3n)}+3/2√5{φ^(3n)-{-1/φ}^(3n)}
=(3+√5) /2√5{φ^(3n)}+(-3+√5) /2√5{(-1/φ)^(3n)}
2φ^2=3+√5, 2(-1/φ)^2=3-√5
x=1/√5{φ^(3n+2)}-1 /√5{(-1/φ)^(3n+2)}
===================================
y=2Y=1/√5{(2+√5)}^(n)-{(2-√5}^(n)}
x=X+3Y=1/2{{(2+√5}^(n)+{(2-√5)}^(n)}+3/2√5{(2+√5)}^(n)-{(2-√5}^(n)}
=(3+√5) /2√5{(2+√5}^(n)-(3-√5)/2√5{(2-√5)}^(n)
===================================
y=2Y=1/√5{φ^(3n)-{-1/φ}^(3n)}=F3n
x=(3+√5) /2√5{φ^(3n)-(3-√5)/2√5{(-1/φ)}^(3n)
x=φ^2 /√5{φ^(3n)-(-1/φ)^2)/√5{(-1/φ)}^(3n)
x=1 /√5{φ^(3n+2)-{(-1/φ)}^(3n+2)=F3n+2
===================================