■マルコフ数とペル数(その40)

f(x,y)=ax^2+(c-a-b)xy+by^2

f(1,0)=a,f(0,1)=b,f(1,1)=c

f(x,y)=d=2(a+b)-cを満たすx,yが存在することがいえればよい。

===================================

f(1,-1)=a-(c-a-b)+b=2(a+b)-c

一般に,等差数列の規則,d,a+b,cは等差数列をなす。

f(v1)=a,f(v2)=b,f(v1+v2)=c,f(v1-v2)=d

f(v1+v2)+f(v1-v2)=2{f(v1)+f(v2)}

f(v1+v2)-{f(v1)+f(v2)}={f(v1)+f(v2)}-f(v1-v2)

===================================

f(x1,y1)=ax1^2+bx1y1+cy1^2

f(x2,y2)=ax2^2+bx2y2+cy2^2

f(x1+x2,y1+y2)=a(x1+x2)^2+b(x1+x2)(y1+y2)+c(y1+y2)^2

f(x1-x2,y1-y2)=a(x1-x2)^2+b(x1-x2)(y1-y2)+c(y1-y2)^2

f(x1+x2,y1+y2)+f(x1-x2,y1-y2)=2a(x1^2+x2^2)+2b(x1y1+x2y2)+2c(y1^2+y2^2)=2f(x1,y1)+2f(x2,y2)

===================================