< 三角関数と双曲線関数の融合域(その30) >

新たに極限公式が四つ得られたので下方に青色式で示す。これまでの式と一緒に示した。

なお、L(2)は $L(2) = 1 - 1/3^2 + 1/5^2 - 1/7^2 + - \cdot \cdot \cdot$ である(カタランの定数)。 $\xi(3)$ は $\xi(3) = 1 + 1/2^3 + 1/3^3 + 1/4^3 + \cdot \cdot \cdot$ である。 $\pi/4$ はL(1)そのものである。 $\pi^2/6$ は $\xi(2)$ 、 $\pi^2/8$ は(3/4) $\xi(2)$ である。 L(3)は $L(3) = 1 - 1/3^3 + 1/5^3 - 1/7^3 + - \cdot \cdot = \pi^3/32$ である。

以下では、双曲線関数 sinh, cosh, tanh はそれぞれ <u>sh, ch, th と略記</u>した。例えば、sh2a は sinh (2a) のことである。a は任意の実数である。tan⁻¹, th⁻¹ はそれぞれ arctan, arctanh である。log は自然対数、e は自然対数の底。

なお、sin, cos, tan は通常の表記であり、例えば、sina は sin(a) のことである。

< 極限公式 >

◆√2 極限公式

$$\sqrt{2} = \lim_{a \to +0} (1 + e^{-a})(1 + e^{-3a})^{-1}(1 + e^{-5a})(1 + e^{-7a})^{-1}(1 + e^{-9a})(1 + e^{-11a})^{-1} \cdot \cdot --- < N1-2 > 0$$

$$\sqrt{2} = \lim_{a \to +0} (1 + e^{-a})(1 + e^{-2a})^{-1}(1 + e^{-3a})(1 + e^{-4a})^{-1}(1 + e^{-5a})(1 + e^{-6a})^{-1} \cdot \cdot --- < P1-4 >$$

◆2^{1/4}極限公式

$$2^{1/4} \! = \! \lim_{a \to +0} (1 + e^{-a})(1 + e^{-2a})^{-2}(1 + e^{-3a})^3(1 + e^{-4a})^{-4}(1 + e^{-5a})^5(1 + e^{-6a})^{-6} \cdot \cdot - - < R2 > 0$$

◆L(2)極限公式

$$L(2) = \lim_{a \to +0} sha \left(tan^{-1} \left(\frac{1}{sha} \right) + tan^{-1} \left(\frac{1}{sh3a} \right) + tan^{-1} \left(\frac{1}{sh5a} \right) + tan^{-1} \left(\frac{1}{sh7a} \right) + \cdots \right) \quad --- < S1 > 0$$

$$L(2) = \lim_{a \to +0} \sinh^2 a \left(\frac{2}{\cosh 2a} + \frac{4}{\cosh 4a} + \frac{6}{\cosh 6a} + \frac{8}{\cosh 8a} + \cdot \cdot \right) \qquad ---- < \$1 - 2 >$$

$$L(2) = \lim_{a \to +0} sh^{2}a \left(\frac{1}{cha} + \frac{3}{ch3a} + \frac{5}{ch5a} + \frac{7}{ch7a} + \cdot \cdot \right) \qquad ---- < s1 - 3 >$$

$$L(2) = \lim_{a \to +0} \operatorname{sha} \left(\tan^{-1} \left(\frac{\operatorname{cha}}{\operatorname{sha}} \right) + \tan^{-1} \left(\frac{\operatorname{cha}}{\operatorname{sh3a}} \right) + \tan^{-1} \left(\frac{\operatorname{cha}}{\operatorname{sh5a}} \right) + \tan^{-1} \left(\frac{\operatorname{cha}}{\operatorname{sh7a}} \right) + \cdot \cdot \right) - < \$1 - 4 >$$

 $\Rightarrow \frac{\pi^2}{9}$ 極限公式 $(3\zeta(2)/4$ 極限公式)

$$\frac{\pi^2}{8} = \lim_{a \to +0} (e^a - 1) \log \left(\frac{1}{\text{tha} \cdot \text{th} 2a \cdot \text{th} 3a \cdot \text{th} 4a \cdot \cdot \cdot} \right) \qquad ---- < \$2 - 1 >$$

$$\frac{\pi^2}{8} = \lim_{a \to +0} \text{sh2a} \cdot \log \left(\frac{1}{\text{tha} \cdot \text{th3a} \cdot \text{th5a} \cdot \text{th7a} \cdot \cdot \cdot} \right) \qquad ---- < \$2 - 2 >$$

$$\frac{\pi^2}{8} = \lim_{3 \to +0} \sinh^2 a \left(\frac{2}{\sinh 2a} + \frac{4}{\sinh 4a} + \frac{6}{\sinh 6a} + \frac{8}{\sinh 8a} + \cdots \right) \qquad ---- < \$2 - 3 >$$

$$\frac{\pi^2}{8} = \lim_{3 \to +0} \sinh^2 a \left(\frac{1}{\sinh a} + \frac{3}{\sinh 3a} + \frac{5}{\sinh 5a} + \frac{7}{\sinh 7a} + \cdots \right) \qquad ---- < \$2 - 4 >$$

◆ $\frac{\pi^2}{6}$ 極限公式 (ξ (2)極限公式)

$$\frac{\pi^2}{6} = \lim_{a \to +0} (1 - e^a) \log \left((1 - e^{-a})(1 - e^{-2a})(1 - e^{-3a})(1 - e^{-4a}) \cdot \cdot \right) \quad ---- < S3 >$$

$$\frac{\pi^2}{6} = \lim_{3 \to +0} 2 \sinh^3 a \left(\frac{1^2}{\cosh^2 a} + \frac{2^2}{\cosh^2 2a} + \frac{3^2}{\cosh^2 3a} + \frac{4^2}{\cosh^2 4a} + \cdots \right) \quad --- < \$3 - 2 >$$

$$\frac{\pi^2}{6} = \lim_{a \to +0} \sinh^3 a \left(\frac{1^2}{\sinh^2 a} + \frac{2^2}{\sinh^2 2a} + \frac{3^2}{\sinh^2 3a} + \frac{4^2}{\sinh^2 4a} + \cdot \cdot \right) \quad --- < \$3 - 3 >$$

$$\frac{\pi^2}{6} = \lim_{a \to +0} 4 \operatorname{sh}^2 a \left(\frac{1}{e^a + 1} + \frac{3}{e^{3a} + 1} + \frac{5}{e^{5a} + 1} + \frac{7}{e^{7a} + 1} + \cdot \cdot \right) \quad ---- < 33 - 4 >$$

$$\frac{\pi^2}{6} = \lim_{a \to +0} 2 \sinh^2 a \left(\frac{1}{e^a - 1} + \frac{3}{e^{3a} - 1} + \frac{5}{e^{5a} - 1} + \frac{7}{e^{7a} - 1} + \cdots \right) \quad --- < \$3 - 5 >$$

$$\frac{\pi^2}{6} = \lim_{a \to +0} 4 \sinh^2 a \left(\frac{1}{e^{2a} - 1} + \frac{2}{e^{4a} - 1} + \frac{3}{e^{6a} - 1} + \frac{4}{e^{8a} - 1} + \cdots \right) \quad --- < 33 - 6 >$$

$$\frac{\pi^2}{6} = \lim_{a \to +0} 4 \sinh^3 a \left(\frac{1^2}{\cosh^2 a} + \frac{3^2}{\cosh^2 3a} + \frac{5^2}{\cosh^2 5a} + \frac{7^2}{\cosh^2 7a} + \cdots \right) \qquad --- < \$3 - 7 >$$

$$\frac{\pi^2}{6} = \lim_{a \to +0} 2\sinh^3 a \left(\frac{1^2}{\sinh^2 a} + \frac{3^2}{\sinh^2 3a} + \frac{5^2}{\sinh^2 5a} + \frac{7^2}{\sinh^2 7a} + \cdots \right) \qquad --- < \$3 - \$ >$$

$\Phi^{\frac{\pi}{4}}$ 極限公式 (L(1)極限公式)

$$\frac{\pi}{4} = \lim_{a \to +0} \frac{(e^{a} - 1)}{2} \left(\frac{1}{cha} + \frac{1}{ch2a} + \frac{1}{ch3a} + \frac{1}{ch4a} + \cdots \right) \qquad ---- < \$4 - 1 >$$

$$\frac{\pi}{4} = \lim_{a \to +0} \sinh \left(\frac{1}{cha} + \frac{1}{ch3a} + \frac{1}{ch5a} + \frac{1}{ch7a} + \cdots \right) \qquad ---- < \$4 - 2 >$$

$$\frac{\pi}{4} = \lim_{a \to +0} \sinh^{2} a \left(\frac{2\sinh 2a}{ch^{2}2a} + \frac{4\sinh 4a}{ch^{2}4a} + \frac{6\sinh 6a}{ch^{2}6a} + \frac{8\sinh 8a}{ch^{2}8a} + \cdots \right) \qquad --- < \$4 - 3 >$$

$$\frac{\pi}{4} = \lim_{a \to +0} 2 \sinh \left(\frac{\cosh a}{\cosh 2a + \cosh a} + \frac{\cosh 3a}{\cosh 6a + \cosh a} + \frac{\cosh 5a}{\cosh 10a + \cosh a} + \frac{\cosh 7a}{\cosh 14a + \cosh a} + \frac{\cdot}{\cdot} \right) \quad -- < \$4 - 4 >$$

◆log2 極限公式

$$\log 2 = \lim_{a \to +0} (e^{a} - 1) \left(\frac{1}{e^{a} + 1} + \frac{1}{e^{2a} + 1} + \frac{1}{e^{3a} + 1} + \frac{1}{e^{4a} + 1} + \cdots \right) \quad ----$$

$$\log 2 = \lim_{a \to +0} 2(e^{a} - 1) \left(\frac{1}{e^{a} + 1} + \frac{1}{e^{3a} + 1} + \frac{1}{e^{5a} + 1} + \frac{1}{e^{7a} + 1} + \cdots \right) \quad ----$$

$$\log 2 = \lim_{a \to \pm 0} 2 \operatorname{sh}^{2} a \left(\frac{1}{\operatorname{ch}^{2} a} + \frac{3}{\operatorname{ch}^{2} 3 a} + \frac{5}{\operatorname{ch}^{2} 5 a} + \frac{7}{\operatorname{ch}^{2} 7 a} + \cdots \right) \quad ---$$

$$\log 2 = \lim_{a \to \pm 0} \operatorname{sh}^{2} a \left(\frac{1}{\operatorname{ch}^{2} a} + \frac{2}{\operatorname{ch}^{2} 3 a} + \frac{3}{\operatorname{ch}^{2} 3 a} + \frac{4}{\operatorname{ch}^{2} 4 a} + \cdots \right) \quad ---$$

◆ζ(3)極限公式

$$\zeta(3) = \lim_{a \to +0} \frac{16(e^a - 1)^2}{7} \log \left(\frac{1}{\text{th} 2a \cdot \text{th}^2 3a \cdot \text{th}^3 4a \cdot \text{th}^4 5a \cdot \cdot \cdot} \right) --- < s6 - 1 > 0$$

$$\zeta(3) = \lim_{a \to \pm 0} \frac{8 \operatorname{sh}^4 a}{9} \left(\frac{2^3 - 2}{\operatorname{ch}^2 2a} + \frac{3^3 - 3}{\operatorname{ch}^2 3a} + \frac{4^3 - 4}{\operatorname{ch}^2 4a} + \frac{5^3 - 5}{\operatorname{ch}^2 5a} + \cdot \cdot \right) \qquad --- < \$6 - 2 >$$

$$\zeta(3) = \lim_{a \to \pm 0} \frac{2 \operatorname{sh}^4 a}{3} \left(\frac{2^3 - 2}{\operatorname{sh}^2 2a} + \frac{3^3 - 3}{\operatorname{sh}^2 3a} + \frac{4^3 - 4}{\operatorname{sh}^2 4a} + \frac{5^3 - 5}{\operatorname{sh}^2 5a} + \cdot \cdot \right) \qquad --- < 56 - 3 >$$

$$\zeta(3) = \lim_{a \to +0} \frac{16 \text{sh}^3 a}{7} \left(\frac{1^2}{\text{sh}2a} + \frac{2^2}{\text{sh}4a} + \frac{3^2}{\text{sh}6a} + \frac{4^2}{\text{sh}8a} + \cdots \right) \qquad ---- < \$6 - 4 >$$

$$\zeta(3) = \lim_{a \to +0} \frac{16 \text{sh}^3 a}{3} \left(\frac{1^2}{e^{2a} + 1} + \frac{2^2}{e^{4a} + 1} + \frac{3^2}{e^{6a} + 1} + \frac{4^2}{e^{8a} + 1} + \cdots \right) \qquad ---- < 56 - 5 > 0$$

$$\zeta(3) = \lim_{a \to +0} \frac{8 \text{sh}^2 a}{3} \log \left((1 + e^{-a}) (1 + e^{-3a})^3 (1 + e^{-5a})^5 (1 + e^{-7a})^7 \cdot \cdot \right) \quad --- < 56 - 6 >$$

$$\zeta(3) = \lim_{a \to +0} 4 \operatorname{sh}^{2} a \cdot \log \left(\frac{1}{(1 - e^{-2a})(1 - e^{-4a})^{2}(1 - e^{-6a})^{3}(1 - e^{-8a})^{4} \cdot \cdot} \right) \quad --- < 56 - 7 >$$

$$\zeta(3) = \lim_{a \to +0} \frac{16 \text{sh}^2 a}{3} \log \left((1 + e^{-2a}) (1 + e^{-4a})^2 (1 + e^{-6a})^3 (1 + e^{-8a})^4 \cdot \cdot \right) \quad --- < 86 - 8 > 66 - 8 >$$

$$\zeta(3) = \lim_{a \to +0} 2sh^{2}a \cdot \log \left(\frac{1}{(1 - e^{-a})(1 - e^{-3a})^{3}(1 - e^{-5a})^{5}(1 - e^{-7a})^{7} \cdot \cdot} \right) \quad --- < s6 - 9 >$$

$$\zeta(3) = \lim_{a \to +0} \frac{4 \sin^3 a}{3} \left(\frac{1^2}{e^a + 1} + \frac{3^2}{e^{3a} + 1} + \frac{5^2}{e^{5a} + 1} + \frac{7^2}{e^{7a} + 1} + \cdots \right) \qquad ---- < 56 - 10 >$$

$$\zeta(3) = \lim_{a \to +0} \operatorname{sh}^{3} a \left(\frac{1^{2}}{e^{a} - 1} + \frac{3^{2}}{e^{3a} - 1} + \frac{5^{2}}{e^{5a} - 1} + \frac{7^{2}}{e^{7a} - 1} + \cdots \right) \qquad ---- < s6 - 11 >$$

$$\frac{\pi^3}{32} = \lim_{a \to +0} 2\sinh^3 a \left(\frac{1^2}{\cosh 2a} + \frac{2^2}{\cosh 4a} + \frac{3^2}{\cosh 6a} + \frac{4^2}{\cosh 8a} + \cdots \right) \quad --- < \$7 - 1 >$$

e^π極限公式

$$e^{\pi} = \lim_{a \to +0} \left(\frac{\text{cha} + \sin a}{\text{cha} - \sin a} \right) \left(\frac{\text{ch2a} + \sin a}{\text{ch2a} - \sin a} \right) \left(\frac{\text{ch3a} + \sin a}{\text{ch3a} - \sin a} \right) \left(\frac{\text{ch4a} + \sin a}{\text{ch4a} - \sin a} \right) - < \$8 - 1 >$$

$$e^{\pi} = \lim_{a \to +0} \left(\frac{\text{cha} + \sin a}{\text{cha} - \sin a}\right)^2 \left(\frac{\text{ch3a} + \sin a}{\text{ch3a} - \sin a}\right)^2 \left(\frac{\text{ch5a} + \sin a}{\text{ch5a} - \sin a}\right)^2 \left(\frac{\text{ch7a} + \sin a}{\text{ch7a} - \sin a}\right)^2 \quad - < \$8 - 2 >$$

今回は上方の四つの青色式が得られた。Wolfram Alpha での数値検証でも正しいものであった。今回は ξ (3) 式が二つ、 $\pi^2/6$ 式が二つ得られた。

なお、lim での a->+0 は a をプラス側から 0 に近づける意味、 $a->\pm0$ は a をプラス側、マイナス側<u>どちらか</u>ら 0 に近づけても O K の意味である

< S 6 - 1 1 > を再掲。

$$\zeta(3) = \lim_{a \to +0} \sinh^3 a \left(\frac{1^2}{e^a - 1} + \frac{3^2}{e^{3a} - 1} + \frac{5^2}{e^{5a} - 1} + \frac{7^2}{e^{7a} - 1} + \cdots \right) \qquad ---- < \$6 - 11 >$$

この式はシンプルで美しい!

今回の式の中から上記<S6-11>の証明を以下に示す。詳細な式変形はとばした。

<S6-11>の証明

下式[1]の左辺から出発する。それに対し、13年前の<u>こちら</u>の2012/8/16の[導出]と類似的な方法を使って変形していき[1]右辺に到達する。途中で<u>ゼータの香りの漂う・・(その307)</u>でのフーリエ級数、深フーリエ級数を使う。この[1]は二変数の恒等式であり、私独自の用語では二変数・第三基本Cos 母等式という母等式に対応する。

$$\frac{\cos x}{e^{a}-1} + \frac{\cos 3x}{e^{3a}-1} + \frac{\cos 5x}{e^{5a}-1} + \frac{\cos 7x}{e^{7a}-1} + \cdot \cdot$$

$$= \cos x \left(\frac{\sin a}{\cosh 2a - \cos 2x} + \frac{\sinh 2a}{\cosh 4a - \cos 2x} + \frac{\sinh 3a}{\cosh 6a - \cos 2x} + \frac{\sinh 4a}{\cosh 8a - \cos 2x} + \cdot \cdot \right) --[1]$$
(a > 0, x は任意実数)

上式を<u>両辺 x で微分した式の</u>両辺を sinx で割って x->0 としてロピタルの定理を適用すると、次式を得る。

$$\frac{1^{2}}{e^{a}-1} + \frac{3^{2}}{e^{3a}-1} + \frac{5^{2}}{e^{5a}-1} + \frac{7^{2}}{e^{7a}-1} + \cdot \cdot$$

$$= \left(\frac{1}{4}\right) \left(\frac{\text{ch}2\text{a}+3}{\text{sh}^{3}\text{a}} + \frac{\text{ch}4\text{a}+3}{\text{sh}^{3}2\text{a}} + \frac{\text{ch}6\text{a}+3}{\text{sh}^{3}3\text{a}} + \frac{\text{ch}8\text{a}+3}{\text{sh}^{3}4\text{a}} + \cdot \cdot \right) --[2]$$

上式の<u>両辺に sh^3a を掛けて</u>、 $a\rightarrow 0$ として<u>右辺に</u>ロピタルの定理を適用すると(ロピタル定理を3回使う)、右辺は $\zeta(3)$ となる。左辺、右辺を逆にすると、目的の< S 6 - 1 1 > に到達する。

$$\zeta(3) = \lim_{a \to +0} \operatorname{sh}^{3} a \left(\frac{1^{2}}{e^{a} - 1} + \frac{3^{2}}{e^{3a} - 1} + \frac{5^{2}}{e^{5a} - 1} + \frac{7^{2}}{e^{7a} - 1} + \cdot \cdot \right) \qquad ---- < 56 - 11 >$$

最後に、気になる点や想うことなど述べておく。

● \(\xeta(3) 極限公式は、これで11個にもなってしまった。

$$\zeta(3) = \lim_{a \to +0} \operatorname{sh}^{3} a \left(\frac{1^{2}}{e^{a} - 1} + \frac{3^{2}}{e^{3a} - 1} + \frac{5^{2}}{e^{5a} - 1} + \frac{7^{2}}{e^{7a} - 1} + \cdot \cdot \right) \qquad ---- < 56 - 11 >$$

なかでもこの式はシンプルで素晴らしい。繰り返しになるが、証明はできてもふしぎな感じは抜けず、どう してこんな式が成り立つのか?本当のところはよくわからない。

- ●極限公式は、<u>二変数の</u>三角関数と双曲線関数の融合域から出てきている。すこし前に三変数域に手を付けたが、そこは霧がたちこめるおそろしい森であって、それでちょっと二変数域に舞い戻ってきた際に極限公式を発見したのだけれども、二変数の豊かさも想像を超えている。
- ●<S3-7>と<S3-8>を再掲。

$$\frac{\pi^2}{6} = \lim_{a \to +0} 4 \sinh^3 a \left(\frac{1^2}{\cosh^2 a} + \frac{3^2}{\cosh^2 3a} + \frac{5^2}{\cosh^2 5a} + \frac{7^2}{\cosh^2 7a} + \cdots \right) \qquad --- < \$3 - 7 >$$

$$\frac{\pi^2}{6} = \lim_{a \to +0} 2 \sinh^3 a \left(\frac{1^2}{\sinh^2 a} + \frac{3^2}{\sinh^2 3a} + \frac{5^2}{\sinh^2 5a} + \frac{7^2}{\sinh^2 7a} + \cdots \right) \qquad --- < \$3 - \$ >$$

これらも対称的で面白い形である。どうして右辺が左辺に収束するのか、ぱっと見ではわからない。。

2025. 2. 2 杉岡幹生

<参考文献>

・「マグロウヒル 数学公式・数表ハンドブック」(Murray R. Spiegel 著、氏家勝巳訳、オーム社)